





# Curso Control de la Calidad y la Acreditación en el Laboratorio de Anatomía Patológica

## VALIDACIÓN, VERIFICACIÓN Y CONTROL DE LA CALIDAD EN ANATOMÍA PATOLÓGICA

Raimundo García del Moral Garrido Director de la UGC Intercentros de Anatomía Patológica de Granada

#### EL CONTROL DE CALIDAD EN AP

La gran complejidad de las pruebas empleadas en AP, la dificultad para validarlas, calibrarlas y estandarizarlas y la ausencia de valores de referencia ha llevado a que: a.Los procedimientos de control de calidad en este campo vayan muy por detrás de los de Análisis Clínicos. b.La agencias de calidad públicas y las compañías privadas interesadas en calidad que existen en cada país sean pocas y tengan una influencia menor en las necesarias mejoras.

c.Aún no estén definidas la calibración, validación, sensibilidad y especificidad de cada determinación en la mayoría de los laboratorios.

#### TIPOS DE MÉTODOS ANALÍTICOS EN AP

- **Métodos cuantitativos**: Los capaces de precisar la cantidad exacta de sustancia o marcador en la muestra.
- **Métodos cualitativos:** Aquellos cuya respuesta es la presencia o ausencia de una sustancia o marcador detectado en forma directa o indirecta en la muestra.
- **Métodos semicuantitativos:** Se encuentran entre los métodos cualitativos y cuantitativos y ofrecen una cuantificación somera del marcador o muestra. Sus resultados se terminan agrupando en clases: Positivo (+ + +): Positivo moderado (++), que en algunos casos implica positividad equívoca (HER2/neu), Positivo Débil (+); Zona Gris (+ / -) y Negativo (-).

## LA CALIBRACIÓN DE TESTS EN AP (I)

• Calibrar es establecer con exactitud la correspondencia entre las indicaciones de un instrumento de medida y los valores de la magnitud que se mide con él.

#### **CATA DE VINOS DE JEREZ: CALIBRADO**



### LA CALIBRACIÓN DE TESTS EN AP (I)

- Calibrar es establecer con exactitud la correspondencia entre las indicaciones de un instrumento de medida y los valores de la magnitud que se mide con él.
- Hasta hace muy poco tiempo las técnicas de laboratorio han sido realizadas manualmente y eran imposibles de calibrar.
- En este momento es posible calibrar muchas pruebas en AP, por ej. en IHQ.
- Calibrar en IHQ es el resultado obtenido del análisis de los controles positivos y negativos seleccionados para cada prueba o de los valores de referencia establecidos para cada una de ellas.

### LA CALIBRACIÓN DE TESTS EN AP (II)

- Calibración de pruebas IHQ de tipo I: Controles semicuantitativos con al menos una muestra de tejido con débil expresión del antígeno y otra con moderada-intensa expresión.
- Calibración de pruebas IHQ de tipo II: Usa controles de referencia o previamente validados (y por tanto ya calibrados) con niveles predeterminados y reproducibles de expresión antigénica. Deben estar incluidas muestras negativas para el antígeno evaluado.
- Los controles hechos en cada laboratorio son válidos si han sido validados científicamente.

#### VALIDACIÓN DE PRUEBAS EN AP

- Validar es aportar la evidencia objetiva de haber cumplido los requisitos particulares establecidos para el uso pretendido y específico de una prueba.
- Un **ensayo válido** es todo aquel que ha sido adecuadamente diseñado para detectar una sustancia o antígeno específico.
- Toda prueba que se monta por **primera vez** en un laboratorio ha de ser validada.

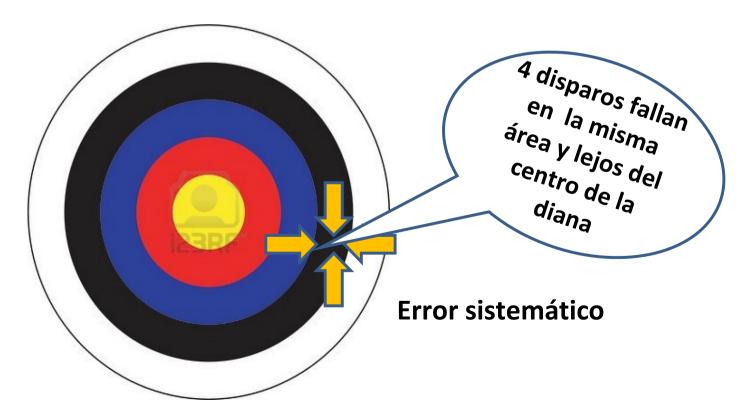
# ¿QUÉ VINO ES MÁS PUNZANTE EN BOCA?: VALIDACIÓN DEL GUSTO DETERMINACIÓN QUÍMICA DE ACETALDEHÍDO



## VERIFICACIÓN DE TESTS EN AP (I)

- Verificar no es más que comprobar que la prueba se está haciendo correctamente.
- Un **ensayo verificado** es todo aquel que detecta a la sustancia o antígeno problema en un tipo de muestra o tejido específico.

#### VERIFICACIÓN DE LA PRUEBA VINOS PUNZANTES EN BOCA




#### VERIFICACIÓN Y VALIDACIÓN DE TESTS EN AP

- El 90% de los ensayos verificados que se realizan en AP son determinaciones inmunohistoquímicas.
- Tests inmunohistoquímicos de tipo I: Controles propios positivos y negativos seleccionados adecuadamente en cuanto la cantidad de antígeno que contienen y su distribución en el tejido.
- Tests inmunohistoquímicos de tipo II: Idealmente deben ser validados sobre material de referencia obtenido de ensayos ´científicos randomizados y validados o, alternativamente, a partir de ensayos propios con concordancia validada respecto a un laboratorio de referencia (por ej. Control de Calidad de la SEAP) u otro método interno validado (FISH de HER2/NEU en este caso).
- En todo caso para que un test pueda ser correctamente validado se necesitan concordancias entre observadores con índice kappa igual o mayor a 0,80.

#### LA FIABILIDAD DEL LABORATORIO DE AP (I)

- Fiabilidad: probabilidad de buen funcionamiento de algo.
- Parámetros de medida con ajuste diario en cada laboratorio:
- **Precisión o reproducibilidad:** Una prueba es precisa cuando análisis repetidos de la misma muestra proporcionan resultados similares.



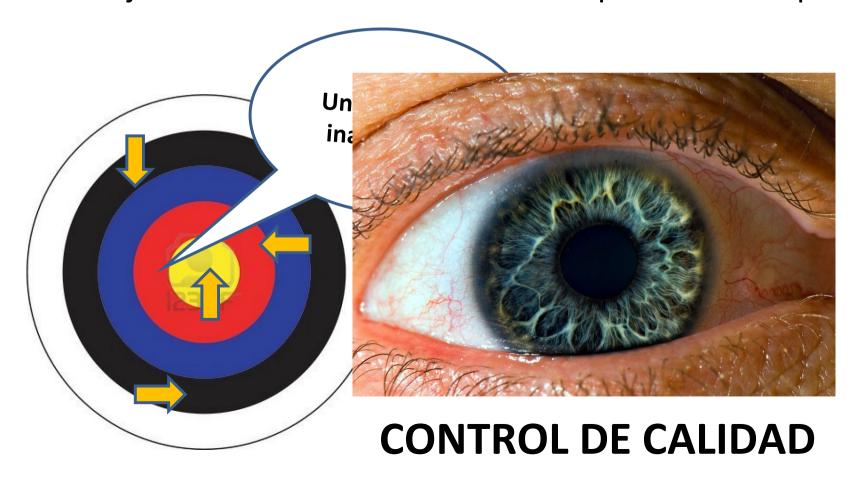
#### LA FIABILIDAD DEL LABORATORIO DE AP (II)

- Fiabilidad: probabilidad de buen funcionamiento de algo.
- Parámetros de medida con ajuste diario en cada laboratorio:
- Seguridad o fidelidad: Una prueba es segura o fiel cuando proporciona un resultado exacto de lo investigado.

Para evaluarla es necesario tener un valor de referencia (control

positivo).




#### LA FIABILIDAD DEL LABORATORIO DE AP (III)

- Lo ideal es que una prueba sea precisa al 100% y segura al 100%.
- En la práctica los métodos, la instrumentación y la variabilidad humana hacen que exista variación en los resultados:



#### LA FIABILIDAD DEL LABORATORIO DE AP (IV)

- Lo ideal es que una prueba sea precisa al 100% y segura al 100%.
- En la práctica los métodos, la instrumentación y la variabilidad humana hacen que exista variación en los resultados y cierta variabilidad ajustada a los estándares de cada prueba es aceptable.



#### LA FIABILIDAD DEL LABORATORIO DE AP (V)

- Parámetros establecidos a partir de los resultados establecidos en la literatura médica:
- **Sensibilidad:** Es la habilidad de una prueba para identificar correctamente si un paciente o biopsia tiene una determinada enfermedad o condición en comparación con los pacientes enfermos o las biopsias positivas de referencia (*gold standard*).
- Test con sensibilidad del 90%: si 100 pacientes padecen una enfermedad el test identifica al 90% de ellos. Un 10% serán falsos negativos. Una prueba es tanto más sensible cuanto menos falsos negativos produce.

Un ejemplo próximo: numerosos **granulomas con necrosis caseosa** producidos por tuberculosis son **Ziehl-Nieelsen negativos**. Luego esta tinción es escasamente sensible.

## PUNZANTE EN EL VINO: SENSIBILIDAD UMBRAL DE DETECCIÓN: 1 PPM EN NARIZ ENTRENADA



#### LA FIABILIDAD DEL LABORATORIO DE AP (VI)

- **Especificidad:** Es la habilidad de una prueba para excluir correctamente si un paciente o biopsia tiene una determinada enfermedad o condición en comparación con los pacientes sanos o las biopsias de control como referencia (*gold standard*).
- Un test con especificidad del 100% aplicado a 100 individuos sanos sería negativo en el 100% y todos ellos quedarían excluidos de padecer la enfermedad. Una prueba es tanto más específica cuanto menos falsos positivos produce.
- Cuando la sensibilidad de un test diagnóstico esencial es de solo el 90% debe exigírsele más que ya produce un 10% de pacientes sanos falsamente positivos que serán tratados inadecuadamente: por ejemplo, la sensibilidad del test de VIH es del 99%; la determinación de vimentina es muy sensible (99%) pero poco específica: no diferencia entre tumor epitelial o mesenquimal.

#### **PUNZANTE EN EL VINO: ESPECIFICIDAD DEL 50%**

